Equilibrium, in its most basic sense, is the ratio between what is created in a chemical reaction and what was used in a chemical reaction. Suppose the following general chemical reaction:
This reads as "Chemical X and Chemical Y react to yield Chemical XY in equilibrium" Many chemical reactions will include a simpler notation for their "react to yield" symbol such as "→" because most reactions that one is introduced to in a general chemistry course fully react to products. The vast majority of chemical reactions do not have this feature, however, and the double arrow symbol above is used to indicate that both products and reactants are being formed when the system has reached chemical equilibrium.
However, the relative amounts of product and reactant can be predicted through the use of an equilibrium constant. Each chemical system has its own equilibrium constant, but the equilibrium constant remains the same for systems prepared with the same chemicals and under the same surrounding conditions. This constant can be found from the following:

This equilibrium relationship governs the reverse reaction as well: if one where to look at the reaction

Of course, it also has its own set of limitations. The equilibrium constant is only constant for a given temperature. It can also be somewhat difficult to actually obtain the equilibrium constant, though there are several methods of doing so. Further, as I've previously mentioned, the equilibrium constant says nothing about the kinetics of the reaction: Only the relative energy of the products and reactants, or how favorable the reaction is thermodynamically. This can be important in synthesizing chemicals as two different products could be likely to form, but because of one product is slow to form, the other product is the major chemical created.
No comments:
Post a Comment